Search results

Search for "porous alumina membranes" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • particle sizes, are listed in Table 2. The atomic layer deposition method is employed to grow metal oxide and metallic three-dimensional nanostructures using porous alumina membranes [41], electrostatically spun nanofibers [39][40] or electrosprayed spherical particles [38] as templates. As Figure 1 shows
PDF
Album
Review
Published 25 Sep 2020

A 3D-polyphenylalanine network inside porous alumina: Synthesis and characterization of an inorganic–organic composite membrane

  • Jonathan Stott and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2020, 11, 938–951, doi:10.3762/bjnano.11.78

Graphical Abstract
  • ) in porous alumina membranes (ALOX-membranes) with respect to different solvent mixtures (tetrahydrofuran (THF) and dichloromethane (DCM)). It was found that increasing the volume fraction of DCM leads to an increasing amount of fibrillar polymer structures within the porous ALOX-membrane. A three
  • ; polyphenylalanine; porous alumina membranes; surface-initiated ring-opening polymerization (SI-ROP); Introduction Porous materials with functional surfaces are a topic of immense interest in science and technology. The high surface area and high mechanical stability of such materials allows for applications in
  • therefore phenylalanine serves as an ideal and straightforward test bed. To the best of our knowledge, in situ formation and grafting of hydrophobic organo-gels within an inorganic porous environment has not been studied so far. As an inorganic substrate, sintered porous alumina membranes were
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2020

Preparation and morphology-dependent wettability of porous alumina membranes

  • Dmitry L. Shimanovich,
  • Alla I. Vorobjova,
  • Daria I. Tishkevich,
  • Alex V. Trukhanov,
  • Maxim V. Zdorovets and
  • Artem L. Kozlovskiy

Beilstein J. Nanotechnol. 2018, 9, 1423–1436, doi:10.3762/bjnano.9.135

Graphical Abstract
  • University, Mira 19, Yekaterinburg 620002, Russia 10.3762/bjnano.9.135 Abstract This article presents the preparation and study of the wetting properties of porous alumina membranes (PAMs) with a thickness of 25 to 75 μm and with a different pore sizes. The fabrication process features, scanning electron
  • surface, and h is the height of the drop. Results and Discussion Topological features of porous alumina membranes In the process of manufacturing of a PAM, the obtained membranes were analyzed after each main stage by means of SEM and AFM. Altogether several types of samples were prepared with different
  • . Wetting properties of porous alumina membranes The previously presented results show that the topological features of PAM surfaces can differ substantially depending on through-pores obtaining. Therefore, the contact (wetting) angle was determined on the outer and back sides of the membrane. Schematically
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2018
Other Beilstein-Institut Open Science Activities